首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13132篇
  免费   1208篇
  国内免费   639篇
电工技术   165篇
综合类   580篇
化学工业   2992篇
金属工艺   930篇
机械仪表   2063篇
建筑科学   465篇
矿业工程   244篇
能源动力   282篇
轻工业   759篇
水利工程   96篇
石油天然气   638篇
武器工业   106篇
无线电   1389篇
一般工业技术   3122篇
冶金工业   279篇
原子能技术   142篇
自动化技术   727篇
  2024年   21篇
  2023年   184篇
  2022年   324篇
  2021年   406篇
  2020年   432篇
  2019年   445篇
  2018年   380篇
  2017年   494篇
  2016年   517篇
  2015年   620篇
  2014年   721篇
  2013年   820篇
  2012年   731篇
  2011年   898篇
  2010年   616篇
  2009年   646篇
  2008年   705篇
  2007年   668篇
  2006年   709篇
  2005年   620篇
  2004年   540篇
  2003年   548篇
  2002年   457篇
  2001年   339篇
  2000年   260篇
  1999年   324篇
  1998年   283篇
  1997年   222篇
  1996年   171篇
  1995年   164篇
  1994年   130篇
  1993年   115篇
  1992年   76篇
  1991年   73篇
  1990年   57篇
  1989年   34篇
  1988年   58篇
  1987年   21篇
  1986年   32篇
  1985年   33篇
  1984年   21篇
  1983年   28篇
  1982年   18篇
  1981年   7篇
  1980年   4篇
  1979年   4篇
  1977年   1篇
  1973年   1篇
  1964年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
An experimental investigation into in-plane scaled Over-height Compact Tension (OCT) [45/90/−45/0]4s carbon/epoxy laminates was carried out to study the scaling of fracture response. The dimensions of the baseline specimens were scaled up and down by a factor of 2. Interrupted tests were carried out for specimens of each size in which the tests were stopped after certain load drops in order to study the failure mechanisms. X-ray Computed Tomography (CT) scanning was applied after the interrupted tests to examine the damage development and its effect on the fracture response. The test results showed that the scaling of the initial propagation of fracture follows Linear Elastic Fracture Mechanics (LEFM), but the development of the damage process zone differs with specimen sizes. The OCT specimens were found to be not large enough to generate a self-similar damage zone during propagation, and so no conclusions could be drawn regarding the R-curve effect.  相似文献   
72.
The objective of this research was to analyse the differences in the dissipated energy under uniaxial tension and biaxial tension–compression load of fibre reinforced concretes using the Wedge Splitting Test. Under biaxial load the specimens were subjected to compressive stress ratios from 10% to 50% of the concrete compressive strength perpendicular to the direction of the tensile load.Under biaxial tension–compression load the energy dissipation capacity of the specimens decreases compared to the uniaxial tension load case on average 20–30%. It is believed that the decrease is a result of the damage mechanism of the concrete matrix and deterioration of the fibre–matrix and/or aggregate–cement paste interfaces in case the section is additionally loaded with compression stresses. This indicates that dimensioning of concrete elements under biaxial stress states using material parameters obtained from tests conducted on specimens under uniaxial tensile load is unsafe and could potentially lead to a non-conservative design.In the second part of this paper the extent of the fracture process zone under uniaxial tension and biaxial tension–compression load will be examined with the Acoustic Emission technique and the reasons for decrease of the energy dissipation capacity under biaxial load will be further discussed.  相似文献   
73.
The addition of nanoparticles has been reported as an option to increase the fracture toughness of thermosetting polymers without compromising the stiffness. In this paper, alumina or carbon nanotubes (CNTs), in three different concentrations, were dispersed in an epoxy resin. Mechanical properties were measured through tensile test and the results indicate increases for all nanocomposites, with a maximum for the addition of 0.5% of CNTs (17% in elastic modulus and 22% in ultimate stress). Using TEM images, it was possible to identify the nanostructures and mechanisms that lead to improved stiffness. Fracture toughness tests and SEM images showed that cavitation – shear yielding (for epoxy/alumina nanocomposites) and crack bridging – pull-out (for epoxy/CNTs nanocomposites) are the predominant mechanisms.  相似文献   
74.
Pre-martensitic phenomena such as abnormal resistivity growth, diffusion scattering, “tweed” contrast and internal friction peak were observed in Ti40.7Hf9.5Ni44.8Cu5 alloy prior to the forward martensitic transformation on cooling. It was shown that all the observed phenomena were due to the formation of quasi-static strain nanodomains in the B2 phase prior to the forward martensitic transformation. This led to accumulation of the elastic energy before the phase transition and resulted in the variation in thermodynamic balance for the forward martensitic transformation and, as a result, influenced the parameters of the phase transition. The appearance of elastic energy prior to the forward transformation caused a decrease in the forward and reverse martensitic transformations' start temperatures, a widening of the temperature range of the reverse transformation and an increase in the hysteresis of the transformation.  相似文献   
75.
The mode II fracture toughness is evaluated for carbon fibre T700-epoxy reinforced woven laminates using the end notch flexure set-up. The analysed woven composites have a different tow size (3K/12K). Three different nesting/shifting configurations are applied to the plies at the fracture surface. Corrected Beam Theory with effective crack length method (CBTE) and Beam Theory including Bending rotations effects method (BTBE) are evaluated for obtaining mode II fracture toughness. During data post-processing, the importance of the bending angle of rotation and the test configuration is observed to be important. The results show that crack propagation under mode II is more stable if the matrix is evenly distributed on the surface. The nesting does not significantly affect mode II fracture toughness values, although a greater presence of matrix on the delaminated area increases its value.  相似文献   
76.
A methodology is presented to directly measure the damage properties and strain softening response of laminated composites by conducting over-height compact tension (OCT) and compact compression (CC) tests. Through the use of digital image correlation (DIC) technique, and analysis of the measured surface displacement/strain data, the strain-softening response of composites is constructed. This method leads to a direct determination of the Mode I translaminar fracture properties with the assumption that the shear stress is negligible around the damage zone and the crack growth occurs in the symmetric opening mode. Using this methodology, and by correlating the observed failure mechanisms with the strain-softening curves, the interaction of failure mechanisms leading to the final failure and also the distinction between the tensile and compressive failure mechanisms can be studied. The effectiveness of the method in accurate identification of the damage parameters is demonstrated through sectioning and deplying techniques. As a consistency check and further verification of the method, the obtained strain-softening curves are fed into a numerical damage mechanics model and successfully used to simulate the detailed response of the very same OCT and CC specimens from which the strain-softening curves were extracted.  相似文献   
77.
Systematic mechanical behaviors were investigated in a Ti-based metallic glass matrix (MGM) composite containing the in-situ β-dendrite phase at 100 K–298 K. We found that the yielding strength increased but the plastic strain decreased with a decrease temperature. The sharp ductile to brittle transition occurred at 100 K. The MGM composite exhibits the large work-hardening behavior at 298 K, but all sample display the work-softening behavior below 298 K. The nominal work-hardening parameter was employed to express the dependence of mechanical properties on temperatures including the brittle failure, the work-hardening and work softening behaviors. It may provide a useful way to evaluate the dependence of mechanical properties on temperatures of MGM composite.  相似文献   
78.
An amorphous Ti41.7–Zr26.7–Cu14.7–Ni13.8–Co3.1 (wt%) ribbon fabricated by melt spinning was used as filler to vacuum braze Ti–48Al–2Nb–2Cr (at%) intermetallics. The influences of brazing temperature and time on the microstructure and strength of the joints were investigated. It is found that intermetallic phases of Ti3Al and γ-Ti2Cu/Ti2Ni form in the brazed joints. The tensile strength of the joint first increases and then decreases with the increase of the brazing temperature in the range of 900–1050 °C and the brazing time varying from 3 to 15 min. The maximum tensile strength at room temperature is 316 MPa when the joint is brazed at 950 °C for 5 min. Cleavage facets are widely observed on all of the fracture surfaces of the brazed joints. The fracture path varies with the brazing condition and cracks prefer to initiate at locations with relatively high content of γ-Ti2Cu/Ti2Ni phases and propagate through them.  相似文献   
79.
80.
The development of a hierarchically engineered micro-nano hybrid composite system is described. A spray coating technique has been utilized as an effective way to deposit carbon nanotubes (CNTs) onto carbon fibre prepregs with good control of network formation and the potential for localization. Compared to more traditional approaches of introducing CNTs into epoxy matrices for enhancing composite properties, this technique has benefits in terms of its simplicity and versatility, as well as the potential for industrial scale-up. The effectiveness of the technique is demonstrated by the extremely low CNT loading (0.047 wt.%) needed to significantly increase the Mode-I fracture toughness of the carbon fibre laminates by about 50%, which is so far the largest reported improvement for such extremely low concentrations of non-functionalized CNTs. In-situ damage sensing has also been presented for the monitoring of structural health of these nano-engineered composite laminates upon loading, and a systematic analysis of sensing signals is performed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号